A PRACTICAL EXAMPLE OF CYBER
SECURITY AUTOMATION TO REVERT
UNAUTHORIZED CHANGES IN YOUR IT

G R o U P ? ENVIRONMENT

JUNE 2023

S

| EEIEE
comeeE T | mmem)

IT_LE N NP | e
< Pl =R A T R e
SEEER BAN~RE e T 0 Y BE M orr EEADEN NEREE

||] o = 1 E,.]m-l_
il ;S !:‘“ el il ;! e L . 4 l,

T

=i
ify

N

|'ll'||

| FEE s el I

s |
'zfr
e
|
A
-u_?,i
= é?
|

TEEE Al
g ._..... ! pe Ll
L_-! .-a.;ﬁ.:-.

WWW.ZEPHON.TECH - oo |

- . . .
__-JF! - 1 5 | > 5 . : .!]| — _q '_-F‘“‘ I‘l ﬂ

 EmmEm= SN EEE—— |

! | ' — - —

SECURITY
AUTOMATION
AND

REVERTING
UNAUTHORIZED
CHANGES

In this white paper we will walk
through a use case of auto-reverting
unauthorized changes in your IT
environment, namely Active
Directory (AD) group changes done
outside your ldentity Management
(IdM) system’s request approval
workflow process.

Many organizations have ldentity
Management (IdM) and/or Privileged
Access Management (PAM)
implementations in place. While
some of these products do support
native change detection, not all of
these provide complete coverage.
Besides, based on my two decades of
experience in this field, there are
always changes made outside the
realm of these products.

Call it Shadow IT, out of band, or “I
don’t have the time or the patience
to follow this new secure process my

company has put in place” or the
ever present ‘I like it doing the old
way, my way” mentality.

Worse still there are still a lot of
companies who neither have IdM nor
PAM solutions in place. In all these
scenarios, how do you then detect
any and all unauthorized changes to
your IT environment? Say for
example, a highly privileged Active
Directory (AD) group, like Domain
Admins

Let’s consider a typical enterprise
which has an identity management
solution in place. For our example
we will pick SailPoint IdentitylQ
(11Q). Ideally all changes to all AD
groups in the enterprise should
follow the request approval workflow
as provided by the SailPoint I1Q
product.

But in our case, there are some
senior engineers or administrators
who still prefer to not follow the
process. This can pose a security
risk, especially when one of their
accounts gets compromised allowing
for lateral movement of privilege
escalation (ransomwares love this).
How do you identify these changes?

How do you hunt
through the tons of
logs and audit data
and ensure only
unauthorized changes
are identified and
responded to?

You definitely want to identify
changes to privileged AD groups, but
not be bothered when they follow
the approval workflow as
implemented in your organization.

You need a solution that can collect
data from various sources and
provide you the ability to correlate
it. In our example, these sources
would be SailPoint I1Q and Active
Directory. You could replace this
with any IdM solution and any
privileged access store (databases,
directory services etc.)

Active Directory: our
first data source

Every organization should turn on
Active Directory auditing. If you have
not and need help, please feel free
to reach out.

Once you have AD auditing in place,
using Log Analytics agents to
capture Security Event data from
your domain controllers and sending
it to Sentinel Log Analytics
workspace is a pretty straight
forward task.

More on this here:
https://docs.microsoft.com/en-
us/azure/sentinel/connect-windows-
security-events.

Your Ildentity
Management System:
our second data
source

Most identity management solutions
including SailPoint 11Q write their
audit data to databases. Once again,
your IdM product configuration
should include auditing changes to
user’s roles, entitlements, and
access. While there isn’t a database
connector for Azure Sentinel, you can
use any log forwarder like Logstash
or Fluentd to ship your audit data to
Sentinel.

This provides added functionality to
filter what and how much data you
are sending through. Certainly, helps
you keep your cost down.

Fluentd: Our Log/Data
Forwarder
Configuration

For our example, we will use Fluentd
which is pretty lightweight. There’s a
Fluent plugin for Azure Log Analytics
we will be using here.

Our basic Fluent configuration would
look like (our database is MySQL
here):

<source>

type mysql_ appender

Set connection settings
for replicate source.

host localhost

username abcdefg

password ***x*x*x%

database myiiqdb

Set replicate query
configuration.

query SELECT * from
spt_audit_event

primary_key created #
specify incremental unique
key (default: id)

interval 1m # execute query
interval (default: 1m)

Format output tag for
each events.
tag sailpoint

limit 1000 # query limit
last_id -1 # specify
primary_key start
</source>

converting sourced epoch
time to ISO 8601 time and
adding it the data

<filter sailpoint>

@type record_transformer
enable_ruby

<record>

timestamp
${Time.at(record["created"]/
1000.to_1i).is08601}
</record>

</filter>

azure log analytics plugin
<match sailpoint>

@type azure-loganalytics
customer_id

ER R S I S S I S I S I S S S

shared_key

EE IR I S S I I I T S I S i S I
log_type SailPointIIQ
time_generated_field
timestamp

</match>

Correlate, Detect,
Identify

By now you are pushing data from AD
and SailPoint 11Q into the Sentinel
Log Analytics workspace. Once data
is in you need to correlate the two
sources. For that you would need to
write a KQL (Kusto Query Language)
query:

SecurityEvent | where
Activity contains "A member
was added to a security-
enabled global group." |
extend MemberAndGroup =
strcat(MemberName, " : ",
TargetUserName) |

join kind=leftanti
(SailPointIIQ CL | where
TimeGenerated > ago(5min) |
where action_s ==
"EntitlementAdd" |

project MemberAndGroup =
strcat(account_name_s, "

"
14

substring(substring(attribut
e_value_s, O,
indexof(attribute_value_s,

")) 4)))

on MemberAndGroup

Let’'s see what we are doing here. We
are filtering Security Events specific
to a user being added to an AD

group.

You could add additional filters to
target a specific user/service account
via the MemberName field, or a
specific AD group, via the
TargetUserName field.

Once we have that data, we are
concatenating the user and group
information into a new field named
MemberAndGroup.

Then from the SailPointl1Q_CL
custom log we are gathering all
events generated in the past 5
minutes as there’s usually a slight
lag from when the “add user to
group” command is executed on the
IdM product side, here SailPoint |1Q,
and when the user gets actually
added to the group in AD. This action
is represented by the EntitlementAdd
value in the action_s audit data field.

You then similarly, concatenate the
member and group information into
the MemberAndGroup field.

The final step is doing a left anti
join, to pick only those entries in the
SecurityEvent data which do not
have a corresponding EntitlementAdd
action within the previous 5 minutes
on the SailPoint 11Q side. This of
course expects the time to be in the
same time zone for both the sources.
If that isn’t the case, just add /
subtract the time offset as needed.

Analyze: Create an
Azure Sentinel Rule

Once you are satisfied with the query
results we create a Sentinel
Analytics rule. For our scenario, we
will have this run every 5 minutes as
a Scheduled Query to capture the
data from the past 10 mins setting
the threshold to more than O query
results. You may want to group these
results so multiple alerts are not
generated.

We picked the data from the past 10
minutes to compensate for the lag
between the action being initiated in
the IdM product and then event
being captured in AD.

You also would want an Incident
created. You should group alerts so
as to not generate multiple
incidents. This is highly
recommended when you see a lot of
noise and SHTF scenarios as each
incident will need to be responded
to and closed. If all alerts are
pointing to the same incident, group
them.

For our use case that is highly
unlikely, unless a privileged AD
account is compromised, and
malware starts adding or removing
users to group all over the place.

Getting flooded with email alerts or
SMS notifications will not be
pleasant in those scenarios and may
help retain your sanity.

Alert and Revert:
Automate Your
Response

While creating the Analytics rule,
you have the option to automate
your response. Here, Sentinel
Playbooks come in handy. These are
no-code/low code Logic Apps. For
our use case, we ended up sending
an email alert with the incident
details and reverting the change via
an Azure Function App (PowerShell
to the rescue; one domain controller
was in the Azure Cloud).

A few other examples of automated
response would be:Creating a
ServiceNow Ticket Initiating a Teams
meetingLocking or disabling the user
accountCalling your system
administrators at 2AM etc.

The possibilities here are endless
with the vast ever increasing list of
connectors available for Logic Apps:
https://docs.microsoft.com/en-
us/connectors/connector-reference/

\f

Incident

Log
udit Data—e Analyics Security Event
Ageant
Actve Directory
Scheduled Alert—
. Query
. Analytics Rule
Audit Data—e y

fluentd

Trigger

[] Playbook /
‘Euli Logic App

: |

Cybersecurity Automation With Azure @ N
Sentinel = "

Motification Azure Function

Custom Log

Revert Change

Conclusion

This white paper presented an example on how you can use the beauty of
cyber security automation, namely SOAR (Security Orchestration, Automation
and Response) to auto-revert unauthorized changes to your IR environment.

Azure Sentinel - Cyber Security
Automation with SOAR

Connectors
Collect
Playbooks ,g?g (f:'h Log
@
= Analytics
Automate
.2,
0,? ,@(}-
Rules e

KQL

Similarly, you can not only correlate data from a wide array of sources, you can
marry that with threat intelligence data and other security solutions, and
automate how you respond to it, all the while utilizing the power of the cloud
and making the system smarter by harnessing it’s Artificial Intelligence /
Machine Learning capabilities present in Microsoft Azure Sentinel. Other tools
like Elasticsearch and Splunk provide similar capabilities too.

Have Questions?

If you want to close the loop with automated cybersecurity, feel free to
contact us here: https://www.zephon.tech.

